Overview of initial CoastRI investments

Daniel A lerodiaconou^{1,2}, Rebecca Zitoun¹, and Michelle Heupel¹

¹ Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia; ² School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.

The Coastal Challenge

Melbourne storm surge, Sept 24 Source: Dr Ben Hague (BOM)

Great Ocean Road

Inverloch beach erosion worsens after 'huge' storms and high tides

Staged Process

STAGE 1:

- Initial, multi-year investments (2023-2027)
- Nationwide consultation

STAGE 2:

- Development of program description
- Implementation of CoastRI

A consortium of NCRIS capabilities is working to **establish** national-scale coastal research infrastructure

Initial Funding (2023-27)

Proposals identified as immediate needs for the coastal zone - \$38M investment.

COASTAL OCEAN MODELING COMMONS: (ACCESS-NRI, AusScope, NCI)

- establishing a coastal ocean modelling commons in partnership with the University of New South Wales (UNSW).
- enhancing Australian ice sheet modelling capacities

COASTAL WAVES AND ESTUARINE CONDITIONS: (IMOS)

• establish observing platforms will provide baseline data to understand conditions and trends in key coastal areas.

IMPROVING THE AVAILABILITY OF COASTAL MARINE BIODIVERSITY DATA: (ALA)

 quantify hotspots and gaps in open-access datasets of coastal marine biodiversity with an initial focus on fish.

MONITORING SEA LEVEL IMPACTS ON COASTAL ECOSYSTEM RESILIENCE: (TERN, AuScope)

- OzSET network
- integration of remote sensing combined with LiDAR to provide information about wetland vegetation characteristic.

4

PLANET RESEARCH DATA COMMONS: (ARDC)

- infrastructure for environmental prediction, trusted data spaces, models, storage, synthesis activities, indigenous data, and data sharing between sectors.
- · data and modelling platforms for research & decision making

UNDERGROUND INFRASTRUCTURE IN CRITICAL COASTAL AREAS: (AURIN)

 access to currently unavailable and hard-to-get urban infrastructure data assets, such as subterranean utilities

6

SHORELINE OBSERVING: (AuScope, TERN, IMOS)

- Establish drone and fixed camera/LIDAR infrastructure
- innovative citizen science and outreach components, providing complimentary, low-cost observations and critical community engagement.

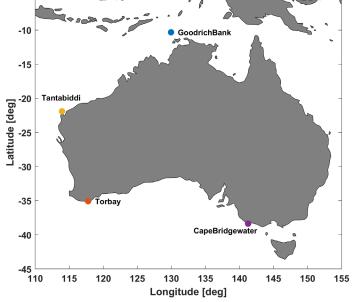
Developing a national coastal wave buoy network

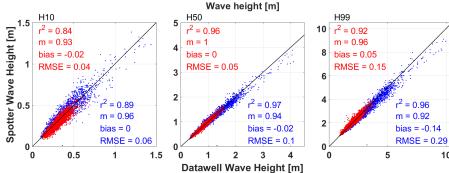
Building on a foundation of regional networks

- Research organisation operated
 - Vulnerable to uncertain funding, research project grants, etc.
 - Predominantly deployed in nearshore regions
 - Initially driven by research needs, but lots of recreational and industry uptake
 - Development of NRT websites for data access

Wawaves.org (UWA)

Vicwaves.com.au (DU)





IMOS - Technology proving around Australia

IMOS New Tech Proving: (2019-2021)

Hansen et al. (in prep)

Australian Wave Buoy Operations and Data Management Guidelines

Australian Research Data Commons - Australian Data Partnerships: Development of a National Infrastructure for in-situ wave observations

Jointly prepared by:

A/Prof Jeff Hansen (University of Western Australia)

Dr Mike Kinsela (University of Newcastle, NSW Department of Planning & Environment)

IMOS National Coastal Wave Buoy Facility

Steering Committee

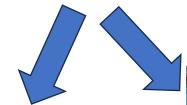
- Includes representatives from regions + IMOS/AODN +Federal agencies (BoM, CSIRO, AIMS)
- Determined standards for site selection, data collection, data processing standards and display

Central facility

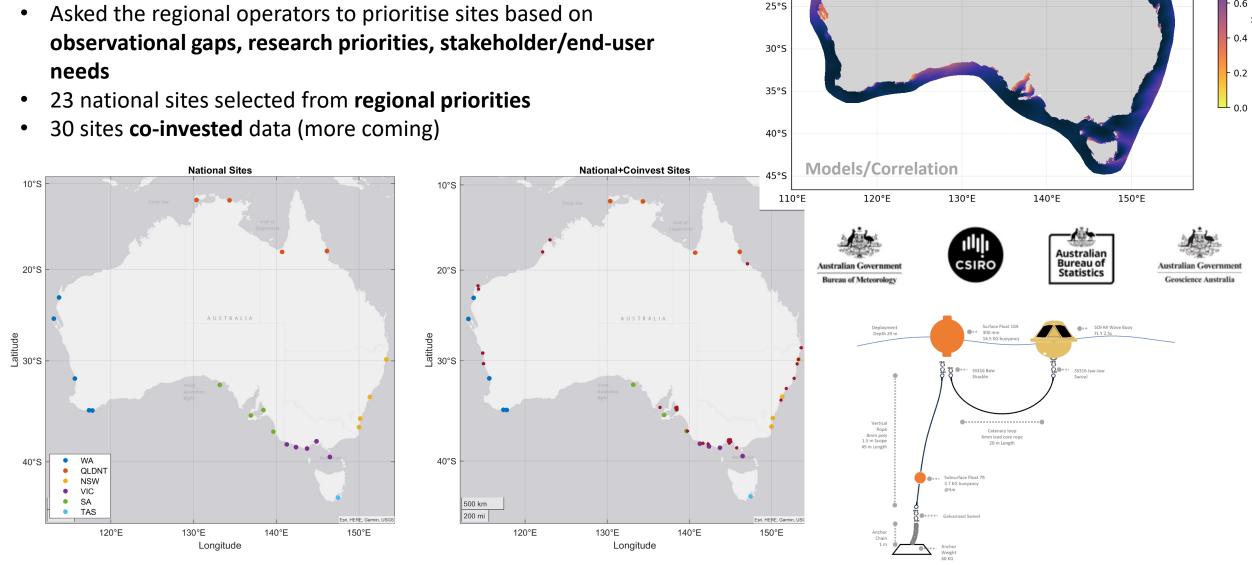
- Consists of Facility Manager and Data Officer
- Lead coordination of the national program, including data processing

Regional sub-facilities

- Responsible for deployment and ongoing maintenance of national sites
- Delivery of data (delayed mode) to central facility for post-processing and delivery to AODN


Steering Committee

Raw NRT + DM data



IMOS - Site selection

- Models/Correlation analyses to understand areas of uncertainty to inform site selection
- Asked the regional operators to prioritise sites based on needs

15°S

20°S

IMOS - Developing a coastal mooring capability

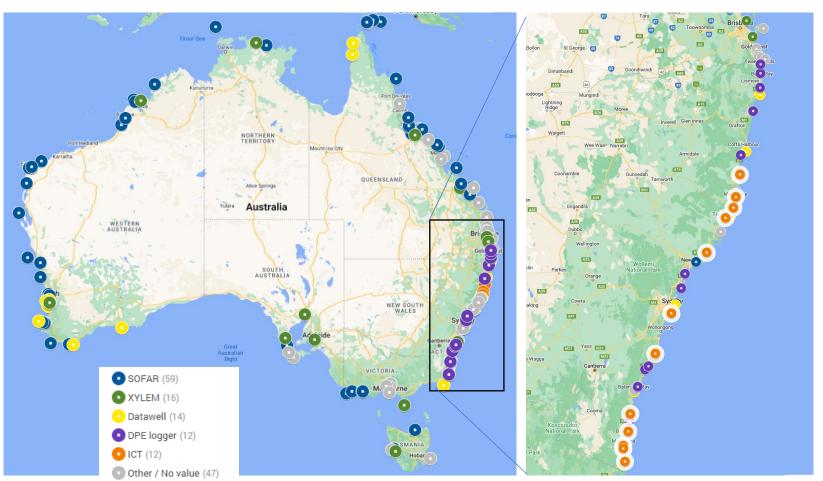
Consultation - need for nationally-coordinated coastal & estuarine WQ observations

Estuarine and Coastal Water Quality Observation Needs:

- Parameters of interest: salinity, temperature, currents, waves, chlorophyll, turbidity
- Water level data from estuaries
- Need to understand storm surge and predict its effects

Estuarine and Coastal Water Quality Data/Modelling Needs:

- Aggregated, accessible data → NEAR REAL TIME DATA
- Standardised processes along the entire observation value chain
- Estuarine models to predict wave runup and inundation, especially in urban and low-lying areas
- Models to identify where hazard lines are for land use planning



IMOS - Mapping of current locations/manufacturers

Building on a foundation of existing infrastructure and regional networks

Challenges

- Lack of information on the web/private data
 - Monitoring Type
 - Buoy locations
 - Buoy capabilities
- Fragmented Information
- Different Data Standards

Avoid duplication and more fragmentation: Importance of mapping current observations/capabilities and aggregating existing data.

IMOS – EOI Facility lead and regional support

- Identifying Priority Sites (new/value-adding):
 - Addressing observational gaps
 - Recognizing historically significant sites
 - Considering stakeholder/end-user needs, including FN perspectives/priorities
 - Ensuring FN permissions and engagement
 - Aligning with national and regional strategic priorities
 - Assessing potential for co-investment opportunities
 - Evaluating ease of access for operators and long-term feasibility
- Identifying Equipment/Platforms/Sensors for cohesive national approach:
 - Consensus on key parameters
- Establishing national data standards and workflows
- Establishing nationally consistent QA/QC protocols
- Establishing national guidelines for the operation of Coastal Moorings

CoastRI Elements

	Theme	Activity type	IMOS elements
WP1.1	Erosion	Observation	· wave buoy +· buoy sensors, drones
WP1.2		Data	· wave buoy data + new sensor data
WP2.1	Inundation	Observation	 estuarine water level wave buoy smart moorings climate tide gauge GNSS buoys [supported by sensor mooring in EWQ]
WP2.2		Data	wave data covered abovetide, mooring and other new data streams
WP3.1	Coastal water quality	Observation	sensor mooring'manual' water sampling[supported by wave buoy in erosion]
WP3.2		Data	· sensor data + manual WQ data
WP4.1	Estuarine water quality	Observation	sensor mooring'manual' water sampling[supported by wave buoy in inundation]
WP4.2		Data	· sensor data + manual WQ data
WP5.1	Biodiversity	Observation	· eDNA sampling/processing, drones
WP9	Communication/Coordination		· staff · workshops + travel
WP10.1	First Nations	Observation	TBD
WP10.2		Data	TBD

First Nations

First Nations Partnerships

Observations & Modelling

Erosion

Coastal & Estuarine Water Quality

Observations

Habitat Cover. Condition & Health

Human Settlements, Infrastructure & Industry

Biodiversity

Community Wellbeing

Data Stewardship

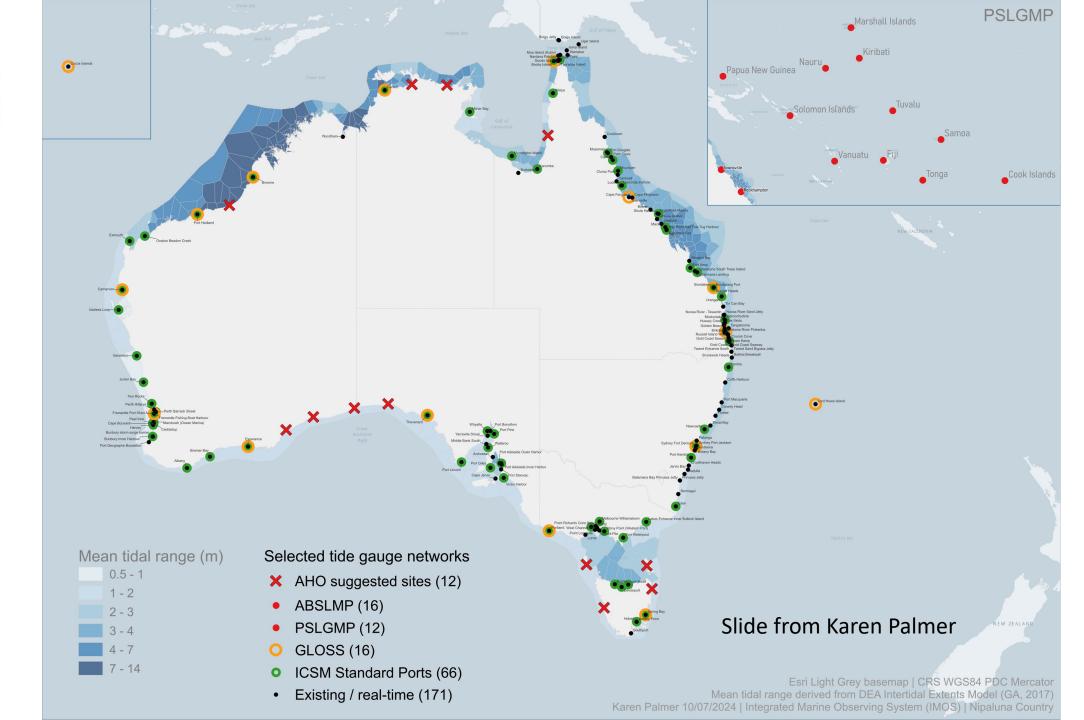
Data Standards Data Aggregation Data Integration

Data Security / Access Data State / Status **Computing Needs**

CoastRI WP 2: Inundation

WP	NCRIS CAPABILITY	ACTIVITIES
2.1 Observations	AuScope, IMOS, SCRV, TERN	 GNSS, Coastline Monitoring Water Level, Wave Buoy Smart Moorings, Tide Gauge, GNSS buoys Surface Elevation Tables (SET)
2.2 Data	ARDC, AuScope IMOS TERN	 Tide Data Aggregation GNSS Mooring Data, Tide Data SET Data, Habitat Condition
2.3 Modelling	Access-NRI, NCI	Storage, Computing, Modelling Commons (ANCOMS)

Observations: estuary water level stations, GNSS upgrades including INSAR reflectors, smart wave buoys moorings), Climate tide gauge upgrades and leveling, Near coastal GNSS Buoys, Surface elevation tables **Data** tide data aggregation and compute, managing new data streams and storage.



Southern Coastal

Next Steps

Pre-Full Program Funding:

- CoastRI website
- Implementing initial funding investments
- Workshop planning across themes
- Continue cross NCRIS, stakeholder and rights holder engagement

Post-Full Program Funding:

- Adjust activities depending on funding outcome
- Workshops and annual CoastRI conferences to strengthen coordination, alignment and connection
- (inc establishment of cross NCRIS CoastRI super sites)

Australia's Integrated Marine Observing System is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent.

PRINCIPAL PARTICIPANTS

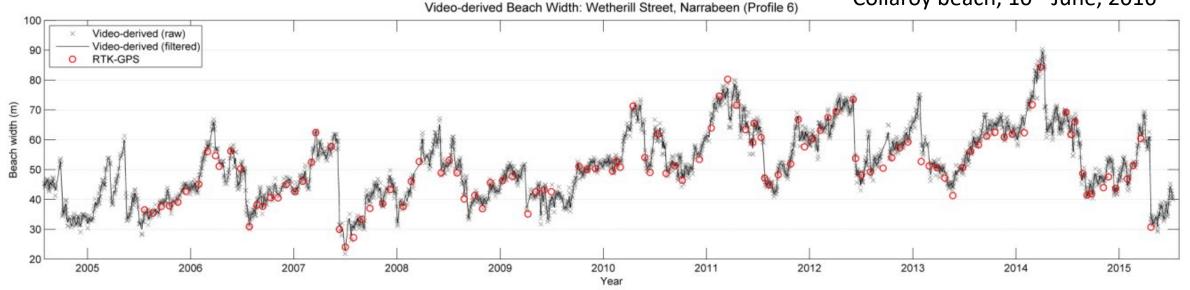
SIMS is a partnership invoving four universities

ASSOCIATE PARTICIPANTS

IMOS thanks the many other organisations who partner with IMOS, providing co-investment, funding and operational support, including investment from the Tasmanian and Western Australian Governments.

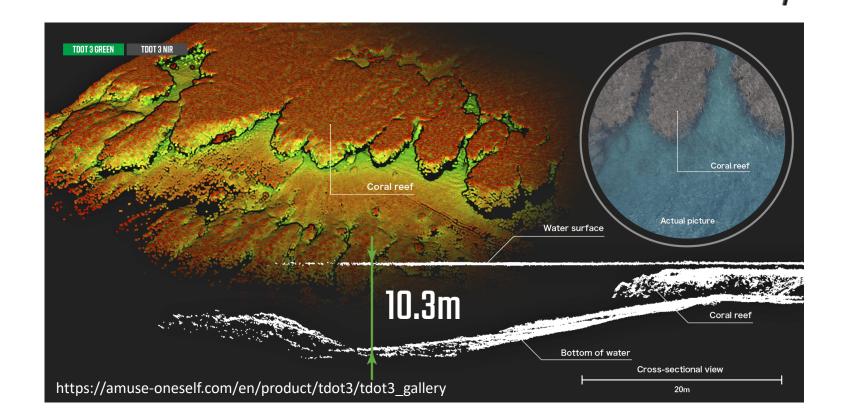
Designing a national coastal observation network

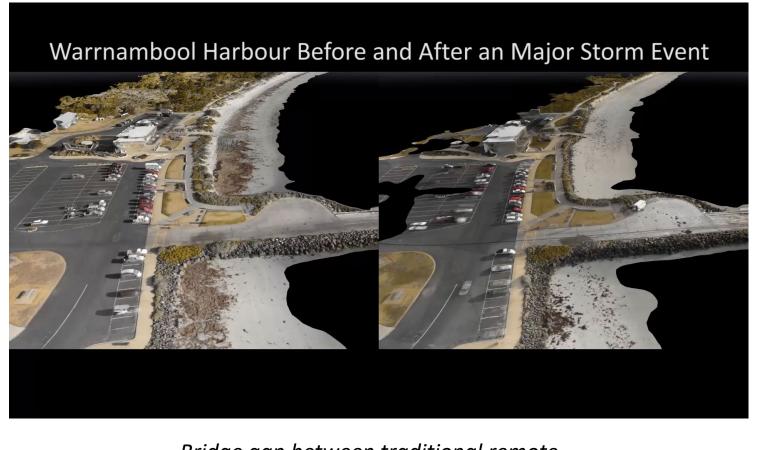
- Advance multi-dimensional and multi-scale observations of Australia's coastal regions at the critical land-sea interface where 85% of Australia's population live
- Using national drone and fixed monitoring infrastructure it will provide a vital bridge between satellite and ground measurements.
- NCRIS 2016 Roadmap "Expansion of IMOS into coastal and estuarine waters"
- Marine Nation 2025: Dedicated Whitepaper states a nationally-coordinated approach to sustained coastal monitoring across Australia is required.
- The Infrastructure Australia Priority List (2020) identified as a high priority the need for a
 coastal inundation protection plan to mitigate affects of sea level rise and flood events.
 This will be reliant on high resolution, repeat and longitudinal data to guide policy and


implementation.

\$9,454,400 (NCRIS) 1:1 Co-invest High-frequency coastal imaging shorelines

- Automated shoreline mapping algorithm has collected > 100,000 hourly shorelines over +15 years (August 2004 – present)
- 420,000 m3 net sand gain measured following 2016 storm
- 91 m3/m on average
- 390 m3/m in centre of beach


Collaroy beach, 10th June, 2016


Long range drone capability

- Critical data across the land sea interface
- Improve Australia's sensor and platform capability
- Sentinel sites for coastal change (habitat, erosion)

Citizen Science Drones

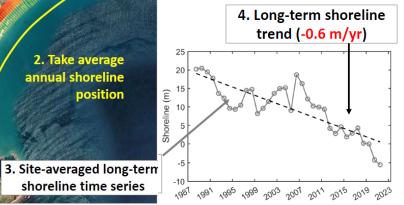
Bridge gap between traditional remote sensing and field observations

Satellite

Plane

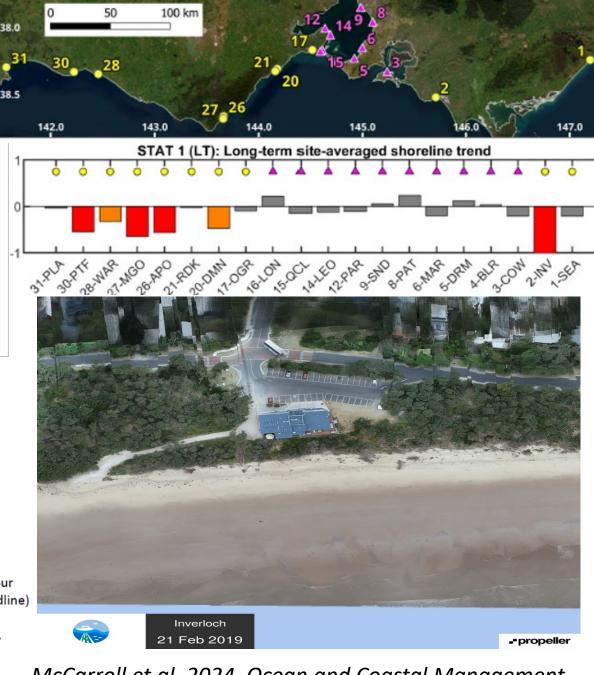
Field

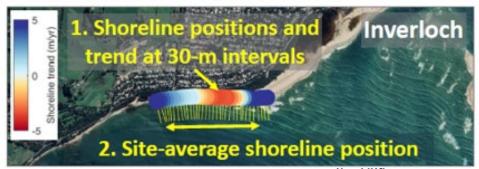
Global 100km 100m 10m 1m cm

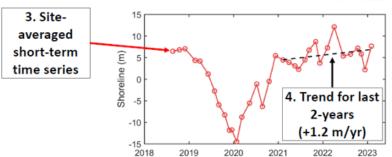

Shoreline trends

2. Take average

shoreline time series


annual shoreline


180 citizens, 40+ sites, 1000+ **Apollo Bay** surveys with over 3,300 flights since 2018, currently >200 surveys per year 4. Long-term shoreline



Useful for...

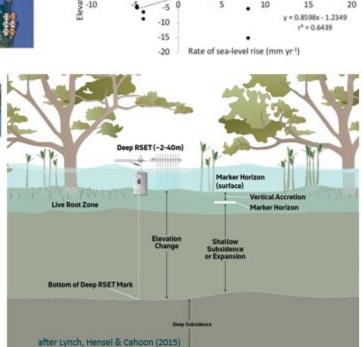
- · Persistent erosion hotspots (map)
- · Long-term shifts (time-series)
- Average sediment budget for the site (site-wide trend)

Useful for...

· Identify recent changes in behaviour across site (time series and 2-yr trendline)

> · E.g., Inverloch varied from short-term erosion (2018-2019), to accretion (2020), to stable (2021-22)

McCarroll et al. 2024, Ocean and Coastal Management


OzSET: The Australian SET-MH network

initial funding July 2025-July 2027

Monitor coastal wetland respond to SLR

- Existing: 300 + (R)SETs across Australia at 32 sites
- Long term data sets (25 years at some sites)

Standardise monitoring App de

SOP field guide App development

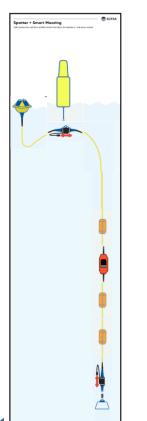
Address spatial data gaps

New sites: Kimberley, GOC, Tasmania new ecosystems – supratidal, seagrass

Enhance capability to undertake field work: tech and practical support

Expanding the metadata: link to LiDAR/UAV

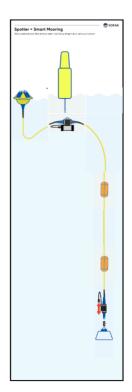
Collaborations with other monitoring capabilities in TERN/Coast RI



Sofar Spotter Platform IMOS Trials

Spotter Platform: extensible ocean sensing platform delivering realtime surface and subsurface data.

IMOS Trials: Spotter with Smart Mooring systems:


System 1. Metocean + currents + water level

Surface:

- Waves
- Wind (inferred)
- Atmospheric pressure

Subsurface:

- High-accuracy temp.
- Current speed + dir.
- High-accuracy temp. + pressure/water level

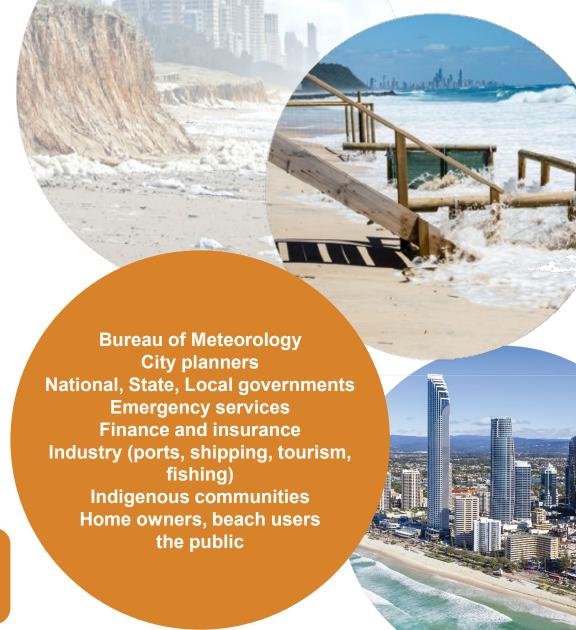
System 2. Metocean + water quality

Surface:

- Waves
- Wind (inferred)
- Atmospheric pressure

Subsurface:

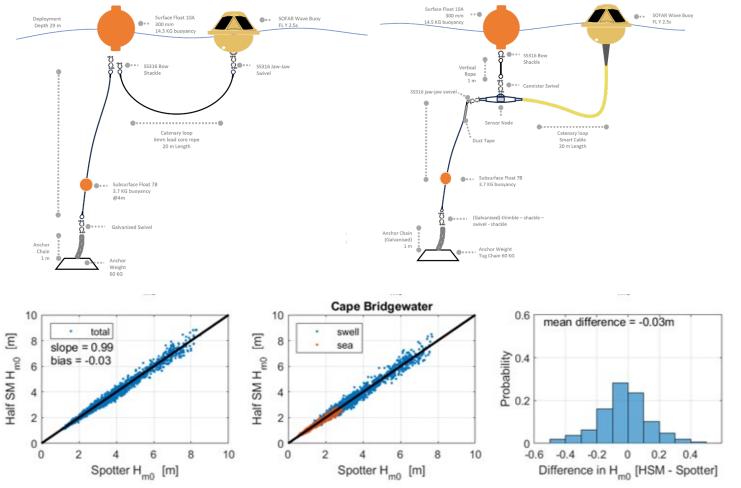
- Water quality (multiparameter EXO3)
- High-accuracy temp. + pressure/water level

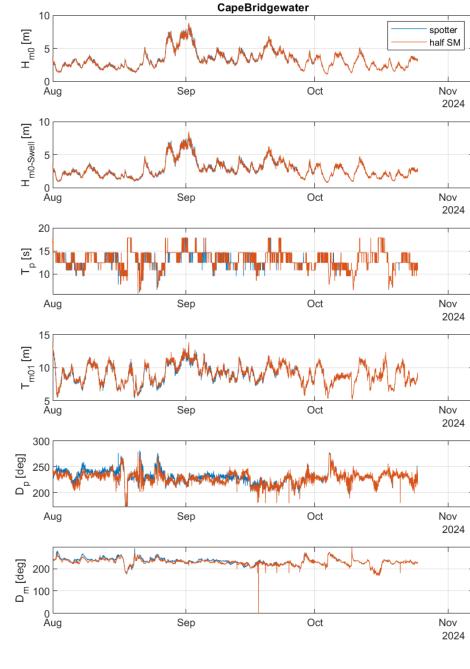


The Coastal Challenge

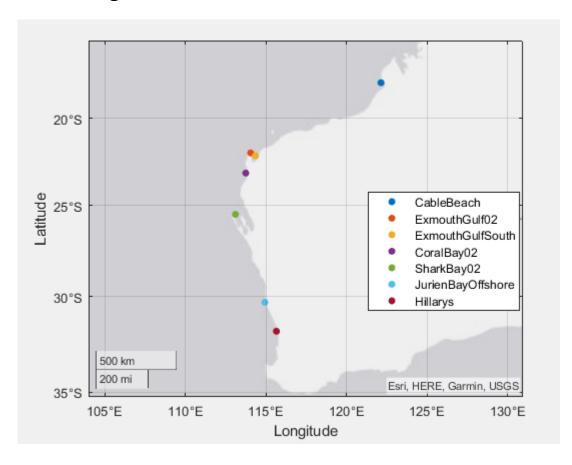
- Our climate and environments are changing at unprecedented rates.
- Over 50% of Australians live within 7 km of the coast in addition to billions of dollars of infrastructure.
- To increase preparedness, sustainable use, and improve decision-making we need more data to understand implications of change to coastal areas.
- A broad suite of end-users need data on coastal conditions and change.

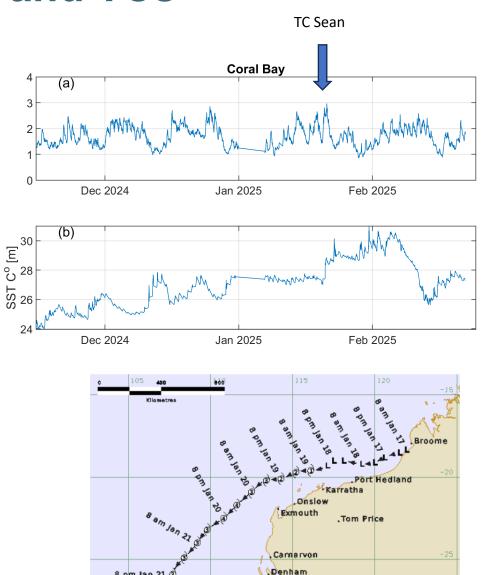
Australia lacks a national, cohesive approach to monitor, understand, predict, and adapt to these changes





Smart mooring trials


- Opportunistic testing of 'half smart moorings'
- Could enable high fidelity wave and surface temperature observations
- Spotter + RBRcoda³ temperature sensor



Recent observations – MHWs and TCs

- Varying response/impact based on relative position to TC track
- Intense heating at Coral Bay through Jan and Feb 2025 --- extensive bleaching along Ningaloo

Geraldton