OCEAN INFORMATION RESOURCES

ACCESSING IMOS AUSTRALIAN OCEAN DATA NETWORK SEA SURFACE TEMPERATURE AND VELOCITY DATA USING ARCGIS

In this guide, we demonstrate how to use ArcGIS to access two IMOS gridded data products from the AODN. Both datasets, Satellite Remote Sensing: Sea Surface Temperature 6 Day and OceanCurrent Sea Surface Geostrophic Velocity, will be downloaded from our data servers.

PART 1: SST IMPORT

1. Navigate to either the AODN THREDDS server (<u>thredds.aodn.org.au/thredds/catalog.html</u>) or direct from Amazon S3 (<u>https://data.aodn.org.au</u>). Navigate to the IMOS folder.

	Catalog https://thredds.aodn.org.au/thredds/catalog.html
	Dataset
	aims/
	Bureau_of_Meteorology/
	CSIRO/
	Deakin_University/
	Defence_Technology_Agency-New_Zealand/
	Department_of_Defence/
	Department_of_Environment_and_Science-Queensland/
	Department_of_Planning_and_Environment-New_South_Wales/
	Department_of_Transport-Western_Australia/
	Derwent_Estuary_Program/
	Flinders_University/
	Future_Reef_MAP/
	Gippsland-Ports-Victoria/
<	Imos/
	NSW-OEH/
	Dilbara_Ports_Authority/

Show 50 entries		
Object	Last Modified	
AIMS/		
Bureau_of_Meteorology/		
CSIRO/		
Curtin_University/		
Deakin_University/		
Defence_Technology_Agency-New_Zealand/		
Department_of_Defence/		
Department_of_Environment_and_Science-Queensland/		
Department_of_Planning_and_Environment-New_South_Wales/		
Department_of_Transport-Western_Australia/		
Derwent_Estuary_Program/		
Flinders_University/		
Future_Reef_MAP/		
Gippsland-Ports-Victoria/		
IMOS/		
Macquaria Linivaraity/		

2. In this example we will use the 'L3SM 6 day average' dataset in order to get the most coverage, as the cloud cover gaps have been removed through modelling from previous days.

There are several types of satellite data available:

L2P -> Single swath, geolocated L3U -> Single swath, gridded L3C -> Single sensor, multiple swath, gridded L3S -> Multiple sensors, multiple swath, L3SM -> Multiple sensor types, multiple swath L3SGM -> Multiple sensors, GeoPolar

For more information regarding IMOS SRS products, visit the catalogue here.

Via THREDDS or S3 Explorer, navigate to IMOS > SRS > SST > ghrsst > L2SM-6D > dn > 2024 > and select the day you would like. In this example, we are using 29th February 2024.

THREDDS

20240217212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	199.1 Mbytes	2024-02-23T10:13:25Z
20240218212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	199.6 Mbytes	2024-02-24T10:07:25Z
20240219212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	200.2 Mbytes	2024-02-25T05:20:59Z
20240220212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	200.6 Mbytes	2024-02-26T10:09:21Z
20240221212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	199.2 Mbytes	2024-02-27T10:44:22Z
20240222212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	199.1 Mbytes	2024-02-28T10:07:35Z
20240223212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	199.8 Mbytes	2024-02-29T05:30:29Z

S3 Explorer

	20240220212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	2024-02-26 21:09:21	191 MB
	20240221212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	2024-02-27 21:44:22	190 MB
	20240222212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	2024-02-28 21:07:35	190 MB
<	20240223212000-ABOM-L3S_GHRSST-SSTfnd-MultiSensor-6d_dn.nc	2024-02-29 16:30:29	191 MB

3. Once the NetCDF '.nc' file has downloaded, begin importing the file into ArcGIS for viewing. Open ArcGIS (we are using ArcGIS Pro version 3.0.2). Start a new map or load an existing project, and set up your map as preferred. When ready to import the data, navigate to the Geoprocessing toolbox and search for 'Make NetCDF Raster Layer'.

Geoprocessing	~ Ŧ
Hake NetCDF Ras	× ~ (
Make NetCDF Raster Layer (Multidimension Tools)	
Makes a raster layer from a netCDF file.	
5	
GA Layer 3D To NetCDF (Geostatistical Analyst Tools)	
Exports one or more 3D geostatistical layers created using the Empirical Bayesian Krigin to netCDF format (*.nc file). The primary purpose of this tool is to prepare the 3D geosta	g 3D tool itistical
Sec. 19 (19) (19) (19) (19) (19) (19) (19) (
Make OPeNDAP Raster Layer (Multidimension Tools)	
Creates a raster layer from data stored on an OPeNDAP server.	
4	
•	

4. Select your downloaded .nc file in order to import it to a raster. Ensure you set the variable to 'sea_surface_temperature' and the Longitude and Latitude are correctly assigned to X and Y respectively. Select an appropriate name for the layer and then run the process.

oprocessing v 🖣 🗧	×
Make NetCDF Raster Layer	Đ
rameters Environments	?)
որսt netCDF File C:\Users\bstepin\Downloads\20240223212000-ABOM-L3S_GHRSST-SSTfind-MultiSensor-6d_dr	,
ariable	_
ea_surface_temperature	1
Dimension	_
on	^
Dimension	_
at	^
lutput Raster Layer	_
sea_surface_temperature	
and Dimension	_
	1
imension Values	
imension 🕑 Value	_
×	
alue Selection Method	_
3y value	1
ell Registration	_
Center	,

The default import raster will have a very bright symbology.

To make it easier to view, adjust the colour values. Navigate to the contents layer on the right, and click on the rainbow symbol to shortcut to the symbology properties. Please note that the max and min values are in the range of 280+ which is degrees K.

The output should then look similar to this, which will give a six day coverage to a high resolution, and will scale on zoom.

PART 2: OCEAN CURRENTS

IMOS_OceanCurrent_HV_20240227T060000Z_GSLA_EV02_NRT.nc

6. Navigate to either the AODN Thredds server or direct from Amazon S3 and locate the latest OceanCurrent to download. In this example, we will add velocity vectors to our existing SST map. To achieve this, IMOS receives Geostrophic Velocity products from OceanCurrent (CSIRO). These can be found in IMOS/Ocean/Current/GSLA/NRT/. In this example, we will select the most recent dataset (29/02/2024).

Search	n:	
2024	10229	
Last Modified	▼	Size 🔶
2024-03-03 08:44:46	2	MB
	Previous	1 Next
	Last Modified 2024-03-03 08:44:46	Search: 20240229 Last Modified 2 2024-03-03 08:44:46 2 Previous

Catalog https://thredds.aodn.org.au/thredds/ca(alog/IMOS/OceanCurrent/GSLA/NRT/2024/catalog.html					
Dataset	Size				
2024					
IMOS_OceanCurrent_HV_20240101T000000Z_GSLA_FV02_NRT.nc	2.058 Mbytes				
IMOS_OceanCurrent_HV_20240102T000000Z_GSLA_FV02_NRT.nc	2.057 Mbytes				
IMOS_OceanCurrent_HV_20240103T000000Z_GSLA_FV02_NRT.nc	2.057 Mbytes				
IMOS_OceanCurrent_HV_20240104T000000Z_GSLA_FV02_NRT.nc	2.057 Mbytes				
INOS_OceanCurrent_HV_20240223T060000Z_GSLA_FV02_NRT.nc	2.056 Mbytes				
INOS_OceanCurrent_HV_20240224T060000Z_GSLA_FV02_NRT.nc	2.057 Mbytes				
IMOS_OceanCurrent_HV_20240225T060000Z_GSLA_FV02_NRT.nc	2.057 Mbytes				
IMOS_OceanCurrent_HV_20240226T0600002_GSLA_FV02_NRT.nc	2.056 Mbytes				

For more information regarding the IMOS OceanCurrent product visit the catalogue here.

2.056 Mbytes

7. Once you have downloaded the file, we can import the vector data into ArcGIS using the multidimensional rastor tool. Click on the 'Add Data' down arrow from the layer tab then select 'Multidimensional Raster Layer'.

8. In the pop up window, navigate to your downloaded OceanCurrent dataset. Select both the UCUR (Horizontal Velocity) and VCUR (Vertical Velocity) and ArcGIS will determine the direction and magnitude of the two velocities, creating a vector using the basic formula below:

9. Select 'OK', and the vector field will be displayed. The standard symbology needs to be adjusted to better represent our vectors. In the contents pane, right click on the layer and select 'Symbology'.

10. The view of the vectors can be adjusted in the symbology window. We recommend changing the spacing to something more fine scale. To do this, select the symbol type to be OceanCurrent (m/s), change the spacing to 25 and set the visibility range to 50-100%.

Symbology - VectorField_UCUR_VCUR v # ×					
Primary symb	ology				
Vector Field			Ŧ		
✓ U-V compo	onents				
U	Vector-U		~		
v	Vector-V		~		
	More pro	perties			
Symbol type	Ocean Cur	rent (m/s) 🗸	2		
Symbol spacin	g		- 25		
Symbol size					
Class breaks			More *		
Symbol	Upper value	Label			
•	≤ 0.5	0.00 - 0.50			
	≤ 1	0.51 - 1.00			
+	≤ 1.5	1.01 - 1.50			
*	≤ 2	1.51 - 2.00			

These values are recommended for this tutorial, and can adjusted to suit your needs.

This should provide an image similar to the one below. This will display the velocity values in colour, indicating the heights and temperatures in Kelvin scale.

FOR MORE RESOURCES

For more Ocean Information Resources, visit **<u>bit.ly/3U0yblZ</u>**

CONTACT US

For more information, please email **info@aodn.org.au**

Australia's Integrated Marine Observing System (IMOS) is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent. **www.imos.org.au**

PRINCIPAL PARTICIPANTS UNIVERSITY of TASMANIA Australian Government csiro AUSTRALIAN INSTITUTE OF MARINE SCIENCE Australian Government Bureau of Meteorology (Lead Agent) SARDI WESTERN **WUTS** MACQUARIE sims SYDNEY stitute Government of South Australia RESEARCH A DEVELOPME SIMS is a partnership involving four universities. **ASSOCIATE PARTICIPANTS** AUSTRALIAN M. Curtin University ANTARCTIC DEAKIN Australian Government PROGRAM THE UNIVERSITY OF Department of Climate Change, Energy, the Environment and Water Australian Antarctic Division MELBOURNE

IMOS thanks the many other organisations who partner with us, providing co-investment, funding and operational support, including investment from the Tasmanian, Western Australian and Queensland State Governments.

IMOS acknowledges the Traditional Custodians and Elders of the land and sea on which we work and observe and recognise their unique connection to land and sea. We pay our respects to Aboriginal and Torres Strait Islander peoples past and present.