

Australian Government

Bureau of Meteorology

Utilising higher resolution satellite sensors to produce 2 km multi-sensor composites of sea surface temperature

Pallavi Govekar, Christopher Griffin and Helen Beggs Bureau of Meteorology, Melbourne, Victoria, Australia

Introduction

As part of the Integrated Marine Observing System (IMOS), the Australian Bureau of Meteorology (BoM) has produced GHRSST L2P and 0.02° gridded L3U, L3C and L3S Sea Surface Temperature (SST) products over two domains (Australia and Southern Ocean) for the period 1992 to present. BOM has produced L3S SST products using 1 - 4 km resolution High Resolution Picture Transmission (HRPT) data from Advanced Very High-Resolution Radiometer (AVHRR) sensors on NOAA Polar Orbiting Environmental Satellites (NOAA-11 to NOAA-19). From 21st November 2018, BOM has additionally produced operational Multi-Sensor L3S products that are constructed by compositing SST from AVHRR sensors on NOAA-18 and 0.75 - 1.5 km resolution SST from Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on Suomi National Polar-orbiting Partnership (Suomi-NPP). BoM now also produces experimental 0.02° x 0.02° Multi-sensor L3S SST products over single to multi-day scales by compositing SST from AVHRR sensors on MetOp-A, MetOp-B, NOAA-15, NOAA-18 and NOAA-19, along with SST from VIIRS sensors on Suomi-NPP and NOAA-20 polar-orbiting satellites. In addition to 1-day single sensor L3C composites of SST from these polar-orbiters, experimental subday scale single sensor L3C products are also produced from Himawari-8 SST.

Applications

Nowcasting coral bleaching:

ReefTemp NextGen uses night-only 1-day L3S Near Real Time maps of SST to provide information on coral bleaching risk for the Great Barrier Reef region. http://www.bom.gov.au/environment/activities/reeft emp/reeftemp.shtml

Fig. 6. BoM ReefTemp NextGen map of the 2 km SST anomaly for 2nd December 2018 off the Queensland coast, Australia, generated using IMOS night-only 1-day Multi-sensor L3S

IMOS 1-day: SST Anomaly 2 December 2018 GBR region

Fig.1 Sea Surface Temperature with quality level 4 and 5 for operational L3S 1day night file from (a) AVHRR only (NOAA-18) (b) Multi-sensor (NOAA-18+Suomi NPP) for 13th April 2019.

Quality Remapping and Data Composition

- The IMOS HRPT AVHRR L2P, ACSPO VIIRS L3U and EUMETSAT FRAC AVHRR L2P files are used to construct IMOS L3U files for NOAA-18, Suomi-NPP, NOAA-20 and MetOp-B satellite sensors.
- In order to merge data from different satellite sensors, the quality level of each dataset to be merged is redefined as the minimum of the original quality_level provided by the data provider and quality_level calculated using Sensor Specific Error Statistics (SSES). The latter is calculated using SSES bias (μ_{sses}) and SSES standard deviation (σ_{sses}) estimates.

$$q_{\rm sses} = \frac{1}{\sqrt{2}} \sqrt{\max\left(\left(\frac{\sigma_{\rm sses}}{\sigma_0}\right)^2 + \left(\frac{\mu_{\rm sses} - \mu_0}{\sigma_{\rm sses}}\right)^2 - 1, 0\right)}$$

$q_s = \lfloor 5 \exp^{\eta q_{\text{sses}}} \rfloor$

Different data sources can then be combined using q_s , provided that η/σ_0 = constant

Merged L3C SST over a given time period and location is defined as the weighted average of the best quality source L3U pixels on the IMOS 0.02 degree grid.

SSTs.

Nowcasting Marine Heat Waves:

IMOS OceanCurrent uses night-only 1/3/6-day L3S and night-only 1-month L3S http://oceancurrent.imos.org.au/

Fig. 7. IMOS OceanCurrent map of the 2 km SST anomaly and surface ocean current vectors for 25th April 2019, South East Australia, generated using IMOS night-only 6-day Multisensor L3S SSTs.

Studying coastal ocean features:

Given the improved spatial coverage of Multi-sensor L3S SSTs, they are useful to identify and study coastal upwelling events in the Australian region.

Fig.8 Upwelling Case Study: Bonney Coast 8th March 2018, Multi-sensor L3S-1day night SST ($QL \ge 3$).

Studying short-term ocean phenomena:

IMOS Himawari-8 L3C products can be used to study

• The data from NOAA-18, Suomi NPP, NOAA-20 and MetOp-B L3C data are composited using an equal weighted averaging method to construct the new experimental Multi-sensor L3S product.

Fig 2. Sea Surface Temperature from L3C 1-day Night file for (a) MetOp-B and (b) NOAA-20 on 13th April 2019.

Adding 1-4 km MetOp-B FRAC AVHRR SST data (Fig 2a) and NOAA-20 VIIRS SST data (Fig 2b) to existing data streams for operational Multisensor L3S (NOAA-18 and Suomi NPP, Fig 1b), shows significant improvement in spatial coverage (Fig 3).

diurnal warming and coastal upwelling, and for coastal model verification etc.

Fig 9. IMOS Himawari-8 hourly L3C SST (QL \geq 4) for 17th November 2018 at 08:00 UTC (~ 4 pm LT) over the Australian North-west Shelf.

We acknowledge the provision of raw AVHRR data

domain ($70^{\circ}E - 190^{\circ}E$, $70^{\circ}S - 20^{\circ}N$). It was found that:

the period from 1st Nov 2018 - 8th May 2019 over the Australian

- Experimental Multi-sensor night L3S had more $QL \ge 3$ matchups than operational AVHRR only L3S.
- Experimental Multi-sensor L3S shows lower bias and standard deviation values than AVHRR-only L3S SSTs for both day and night.

Fig 5. Validation statistics of the 1-day night operational AVHRR only

from ground-stations operated by the Bureau of Meteorology, Australian Institute of Marine Science, Western Australian Satellite Technology Applications Consortium, Geosciences Australia and **Commonwealth Scientific and Industrial Research** Organisation (CSIRO). We also acknowledge the provision of Suomi NPP and NOAA-20 VIIRS SST retrievals from the National Oceanic and Atmospheric Administration (NOAA) and MetOp-B FRAC AVHRR SST retrievals from EUMETSAT.

L3S (left) and experimental Multi-sensor L3S (right) SSTs over a 30day moving window.

IMOS is a national collaborative research infrastructure, supported by Australian Government. It is led by University of Tasmania in partnership with the Australian marine and climate science community.

NCRIS National Research Infrastructure for Australia

An Australian Government Initiative

www.imos.org.au

